Mining query logs with topic models

Donn Morrison

Computer Vision and Multimedia Laboratory, University of Geneva

August 31, 2009
Objectives

- Modelling user interaction (relevance feedback)
- Improve image retrieval through indexing
- Incremental image annotation
Nature of the data (relevance feedback)

- Query-by-example paradigm
- User refines query by marking positive (+1) and negative (-1) examples from results
- Query is refined until the search terminates (successfully or not)

At any time, we have a collection of M images and N queries. The collection of relevance judgements can be represented as a matrix \mathcal{R} of co-occurrences:

$$
\begin{bmatrix}
\text{Images} & d_1 & d_2 & \ldots & d_M \\
\hline
q_1 & 1 & -1 & \ldots & 1 \\
q_2 & -1 & 0 & \ldots & -1 \\
q_3 & 1 & -1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
d_M & 1 & 0 & \ldots & -1 \\
\end{bmatrix}
$$
Topic modelling

- Goal: explain observed co-occurrences by estimating linear combinations of hidden factors
- Text modelling: Underlying topics are said to generate word observations in text documents
- In our case, the hidden factors are the users’ intent during search as well as concepts or objects expressed in the images of the collection
Non-negative matrix factorisation (NMF)

Seek an approximation $\mathcal{R} \approx WH$ such that the Frobenius norm $||\mathcal{R} - WH||_F$ is minimised. We iterate update steps:

$$H_{cj} \leftarrow H_{cj} \frac{\sum_i W_{ic} \mathcal{R}_{ij}}{\sum_i W_{ic}}$$

$$W_{ic} \leftarrow W_{ic} \frac{\sum_j H_{cj} \mathcal{R}_{ij}}{\sum_j H_{cj}}$$

(1)

(2)

where W is the image-topic matrix and H is the topic-query matrix (Lee and Seung, 1999).

NMF constrains values in the co-occurrence matrix to be ≥ 0, so we scale our RF data (\mathcal{R}_{ij}) into this range:

$$-1 \rightarrow 0$$

$$0 \rightarrow 0.5$$

$$1 \rightarrow 1$$

which can be loosely interpreted as the probability of an image d_i being relevant to a query q_j.

5/18
Singular value decomposition (SVD)

Any matrix \mathbf{R} can be rewritten in the form:

$$\mathbf{R} = \mathbf{U} \Sigma \mathbf{V}^T$$ \hspace{1cm} (3)

where \mathbf{U} are the left singular vectors, Σ are the singular values (square roots of the eigenvalues), and \mathbf{V}^T are the right singular vectors.

A rank-k approximation to \mathbf{R} can be achieved by retaining the k largest singular values in Σ:

$$\mathbf{R}_k = \mathbf{U}_k \Sigma_k \mathbf{V}_k^T$$ \hspace{1cm} (4)

Orthonormality constraint:

$$\mathbf{U}^T \mathbf{U} = \mathbf{V}^T \mathbf{V} = \mathbf{I}$$

$$\|\mathbf{U}\| = \|\mathbf{V}\| = 1$$ \hspace{1cm} (5)
User Relevance Model (URM)

Extension of probabilistic latent semantic analysis (PLSA) (Hofmann, 1999)

- Generative, probabilistic model
- Documents and queries assumed to be generated from the same concept-space

Relevance judgement generation:

- generate a query with probability $P(q)$
- select latent concept with probability $P(c|q)$
- select a document with probability $P(d)$
- generate a relevance judgement $P(r|d, c)$
User Relevance Model (URM)

Joint probability (co-occurrence observations) $P(r, d, q)$ is defined as:

$$ \mathcal{R} = P(r, d, q) = P(q)P(d)P(r|d, q), \quad (6) $$

where

$$ P(r|d, q) = \sum_{c \in \mathcal{C}} P(r|d, c)P(c|q). \quad (7) $$

Following Bayes rule, we can rewrite the joint probability as:

$$ P(r, d, q) = \sum_{c \in \mathcal{C}} P(c)P(q|c)P(d)P(r|d, c). \quad (8) $$

“Fit” of latent variables to observed data measured using log-likelihood:

$$ \mathcal{L} = \sum_{d \in \mathcal{D}} \sum_{q \in \mathcal{Q}} \sum_{r} n(r, d, q)\log P(r, d, q). \quad (9) $$

Expectation-maximisation used to converge on a maximum \mathcal{L}.

Document similarity with topic models

- Models lend themselves to item/attribute similarity
- We can use these similarity graphs to propagate meta-data and index images

Image similarity using dot product:

- NMF: WW^T
- SVD: UU^T
- URM: $P(r|d, c)P(r|d, c)^T$
Experiments

Corel image collection, 1000 images, 10 categories, 100 images per category, 3-5 annotations per image.

- Sparsity 95%
- Noise 10%
- 3000 artificial query sessions
- 10 latent variables
Image similarity experiments

Accuracy measured using *mean average precision*: each image used as a query; ranked list of most similar images yields a score closer to 1 the more the relevant images are ranked first (an indication of images clustered over latent topics).
Image annotation experiments

For each unannotated image, rank top-I similar images and select w tags from the pool of W total tags.

Formally:

We repeat a draw $t_1\ldots w \sim \mathcal{U}[1, W]$ (without replacement) for each unannotated image where w equals the desired number of annotations ($w = 4$).
Image annotation experiments

Original vocab size: 253; depleted vocab size: 153; unannotated images: 2
Image annotation experiments
Accuracy measure: Euclidean distance between term-document matrices
Example annotations

(deer, grass, water, white-tailed)

(bear, river, snow)
(bear, grizzly, stream, water)

dust, elephant, sky, water
(bull, elephant, sky, water)

forest, snow, trees, wolf
(grass, shade, trees, wolf)

head, lion, mane, rocks
(cats, field, grass, lions)

glass, hippo, pair, river
(grass, hippos, wallow, water)
Conclusions

▶ Introduced a probabilistic User Relevance Model
▶ Recovery of underlying concepts from documents possible under sparse conditions
▶ Application to retrieval and image annotation

Future work

▶ Images with no tags can be brought to the attention of the user in order to elicit interaction
▶ Tag quality could be improved by supplementing the RF judgements with low-level feature information (pseudo-relevance feedback)
Thank you

Questions

Expectation-maximisation for URM

\[\mathcal{L} = \sum_{d \in D} \sum_{q \in Q} \sum_{r} n(r, d, q) \log P(r, d, q), \quad n(r, d, q) \in \{0, 1\} \quad (10) \]

E-step:

\[P(c | r, d, q) = \frac{P(c) P(q | c) P(r | d, c)}{\sum_{c \in C} P(c) P(q | c) P(r | d, c)}, \quad (11) \]

M-step:

\[P(q | c) \propto \sum_{d \in D} \sum_{r} n(r, d, q) P(c | r, d, q), \quad (12) \]

\[P(r | d, c) \propto \sum_{q \in Q} n(r, d, q) P(c | r, d, q), \quad (13) \]

and

\[P(c) = \frac{\sum_{d\in D, q\in Q, r} n(r, d, q) P(c | r, d, q)}{\sum_{d\in D, q\in Q, r} n(r, d, q)}. \quad (14) \]