Characterizing Small Group Dynamics: classification and mining

Dinesh Babu Jayagopi, Idiap Research Institute Daniel Gatica-Perez, Idiap Research Institute

Related Work – small group, face-toface

Individual behaviour

- Dominance and Status (Jayagopi et al. 2009)
- Roles (Vinciarelli 2007)
- Personality (Pianesi et al. 2008)

Group behaviour

- Small set of meetings interactivity and centrality (Otsuka et al. 2006)
- Conversational analysis
 - Group meeting activities monologue, discussion, presentation (Zhang et al 2005, Dielmann et al 2007)

Modeling - Individual or Group behaviour

Applications: characterizing groups

Monitering team cohesiveness

Identify leadership skills

Identify irresponsible behaviour

Two different approaches

- Classification task
 - discriminative training
 - requires ground-truth
- Mining task
 - Clustering
 - does not require ground-truth

Two different approaches

Classification task discriminative training requires ground-truth

Mining task Clustering does not require ground-truth

AMI meeting dataset:

To design a remote control together Each participant had a role

COOPERATIVE

The Apprentice dataset:

To fire a participant 6th season of a TV show

COMPETITIVE

Motivation and hypotheses

Motivation

Objectives of a group => Group Dynamics (Mc Grath 1984)

Our Approach

Meeting Dataset

from head set microphones

speech

speaking-turn segmentation

- from speaking-turn segmentation
 - speaking length (TSL)
 - number of turns (TST)

number of successful interruptions (TSI)

Fraction of Overlapped Speech $FO = \frac{O}{T}$ Fraction of Silence $FS = \frac{S}{T}$ Fraction of Non-overlapped Speech $FN = \frac{N}{T}$

- Group Speaking Length (GSL) $\sum_{i} TSL(i) / MeetingDuration$
- Group Speaking Turns (GST) $\sum_{i} TST(i) / MeetingDuration$
- Group Speaking Interruptions $(GSI\sum_{i} TSI(i) / MeetingDuration)$

Group Speaking Interruption-to-Turns Ratio (GI $\sum_{i} TSI(i) / \sum_{i} TST(j)$

Egalitarian measure – Bhatttacharya Distance BD(input,egal. Vector) 0 if egalitarian oup Speaking Interruptions Egalitarian Measure

Meeting Prediction using 2 classifiers

Using naive bayes classifier (likelihood ratio)

Results

•Group Interruption To Turn Ratio (GIT), Group Turn Egalitarian Measure (GTEM) Best single cues

-Combination of GIT and GTEM using an SVM classifies 100 % Correct

Fraction of overlap,
Group Speaking Ratio
did not predict well

Conclusion: Classification

- Our two hypotheses 'competitive and cooperative meetings have different group dynamics' and 'nonverbal features capture this difference' and was verified
- Characterization of entire group by the aggregation (both temporal and person-wise) of their nonverbal behaviour is promising
- □ GIT, GTEM are best single cues
- Combination of GIT, GTEM using an SVM 100% accuracy
- The current limitation is the moderate size of dataset
- Future work would expand dataset, features and classification classes.

Two different approaches

Classification task discriminative training requires ground-truth

Mining task

Clustering does not require ground-truth

Mining task

Features

of different size

Generic group patterns construction

TSL, TST, TSI

Generic group patterns – at diff. scales

Leadership patterns – at diff. scales

Latent Dirichlet Allocation (LDA) model

$$P(w_i) = \sum_{t=1}^{T} P(w_i \mid z_i = t) P(z_i = t)$$

Input (example) SL-One ST- Two SI- Equal SL-L ST-L SI-NL

Say T = 3

5 min documents = 873 (overlapping) 2 min documents = 501 (nonoverlapping)

LDA based discovery at 2 min & 5 min

Topic 1 - LDA		Topic 2 - LDA		Topic 3 - LDA	
P(z) = 0.32		P(z) = 0.33		P(z) = 0.35	
'Autocratic'		'Participative'		'Free-rein'	
Word	P(w z)	Word	P(w z)	Word	P(w z)
SL-L	0.2	ST-Equal	0.25	SL-One	0.22
ST-L	0.2	SL-Equal	0.18	SL-NL	0.19
SI-L	0.16	ST-NL	0.15	SI-One	0.16
SI-Two	0.11	SL-NL	0.15	SI-NL	0.16
SI-Rest	0.08	SI-NL	0.14	ST-NL	0.13
ST-Rest	0.07	SI-Equal	0.12	ST-One	0.12

Table 1: LDA based discovery at 5-minute scale

Topic 1 - LDA		Topic 2 - LDA		Topic 3 - LDA	
P(z) = 0.31		P(z) = 0.35		P(z) = 0.34	
'Autocratic'		'Participative'		'Free-rein'	
Word	P(w z)	Word	P(w z)	Word	P(w z)
ST-L	0.22	ST-Equal	0.19	SL-NL	0.30
SL-One	0.20	SI-L	0.16	SI-NL	0.19
SL-L	0.19	SL-Equal	0.12	ST-NL	0.18
ST-One	0.15	ST-NL	0.12	SI-One	0.16
SI-Silence	0.13	SI-Two	0.10	SL-One	0.11
ST-Two	0.06	ST-Rest	0.06	ST-One	0.07

Table 2: LDA based discovery at 2-minute scale

Average topic distribution over groups

0.5

Group 1 n 0.5 Group 2 0 0.5 Group 3 0.5 Group 4 0 0.5 Group 5 0 0.5 Group 6 0 0.5 Group 7 0 0.5 Group 8 0 0.5 Group 9 0.5 Group 10 Participative Free-rein Autocratic

2 min slices

5 min slices

Conclusion: Mining

- We investigated the problem of discovering nonverbal group patterns using topic models.
- We proposed a novel bag-of-NVPs approach to characterize groups.
- Generic group patterns described the group and leadership patterns coded the position of the leader.
- Using an LDA model, the topics discovered fairly mimic well the three classic leadership styles of Lewin et al – autocratic, participative and free-rein.
- Future work annotation to further validate our claims, expand the bag-of-NVPs, try author-topic model etc.

ACKNOWLEDGEMENTS

Bogdan Raducanu

Daniel Gatica-Perez

