Thermal imaging of facial expressions: investigating thermal correlates of Facial Action Units activities

Didier Grandjean
Sophie Jarlier
Sophie.Jarlier@cisa.unige.ch

Thermography for emotions study, why?

PHYSIOLOGICAL MEASURES

- Cardiac pulse (ECG)
- Muscles activation (EMG)
- Skin conductance

THERMAL IMAGING

- FLIR SC3000
- A NEW PHYSIOLOGICAL MEASURE

- * Non invasive technique
- * Avoids overloading equipment
- * Investigation of original physiological patterns (skin temperatures)
Thermography for emotions study, why?

PUBLIC SERVICES
- Security in airports (thermal scanners for fever screening and detection of stress in terrorists)
- Thermography used by firefighters to see persons through smoke
- Mechanical inspections
- Gas leak

MEDECINE DIAGNOSIS
- Human breath tracking (2)
- Cardiopulmonary tracking (3)
- Muscles troubles (1)

Emotions
- Emotion discrimination (1, 2, 3)
- Deception detection (4)
- Stress detection in human and animals (5, 6, 7)

Our 1st validation study

Goal of this work:
Validating the thermal imaging technique for assessing the fluctuations of facial heat patterns.
Measuring the camera sensitivity to kinetics, intensities and specificities

First interest: facial heat patterns
Emotional facial expressions can be systematically coded using Facial Action Coding System (FACS)
FACS experts as subjects
Thermal correlates of facial action units

http://riendetout.over-blog.org/article-14411041-4.html
Questions and Hypotheses

• **QUESTIONS**
 – **Kinetics**
 Is thermography sensitive to kinetics?
 – **Intensities**
 Is thermography sensitive to intensity?
 – **Specificity**
 Is thermography sensitive to muscles specificity?

• **HYPOTHESES**
 – Each AU has a specific recognizable facial heat pattern associated
 – Temperature changes in specific muscles are correlated with their associated action unit simulation
 – Thermography can be an adapted tool for studying kinetics and intensities of the AUs

Protocol

• 4 FACS experts: 1 man and 3 women from 28 to 51 years old all right-handed except one woman
• 9 different AUs
• 3 intensities: just perceptible / normal / high
• 2 speeds: slow(5sec) / fast(1sec)
• Thermal camera + optical camera
• Head till
The Action Units

<table>
<thead>
<tr>
<th>AU</th>
<th>DESCRIPTION</th>
<th>MUSCLE</th>
<th>IMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU1+2</td>
<td>Inner and outer brow raiser</td>
<td>Frontalis</td>
<td>+</td>
</tr>
<tr>
<td>AU4</td>
<td>Brow lowerer</td>
<td>Corrugator</td>
<td></td>
</tr>
<tr>
<td>AU5</td>
<td>Upper lid raiser</td>
<td>Levator palpebrae superioris</td>
<td></td>
</tr>
<tr>
<td>AU6+12</td>
<td>Cheek raiser and lip corner puller</td>
<td>Orbicularis oculi + zygomaticus major</td>
<td></td>
</tr>
<tr>
<td>AU12</td>
<td>Lip corner puller</td>
<td>Zygomaticus major</td>
<td></td>
</tr>
<tr>
<td>AU12+25</td>
<td>Lip corner puller and lips part</td>
<td>Zygomaticus major + depressor labii inferioris</td>
<td>+</td>
</tr>
<tr>
<td>AU25</td>
<td>Lips part</td>
<td>Depressor labii inferioris</td>
<td></td>
</tr>
<tr>
<td>AU9+10</td>
<td>Nose wrinkle and upper lip raiser</td>
<td>Levator labii superioris</td>
<td>+</td>
</tr>
<tr>
<td>AU14</td>
<td>Dimpler</td>
<td>Buccinator</td>
<td></td>
</tr>
</tbody>
</table>

http://www.cs.cmu.edu/afs/cs/project/face/www/facs.htm

Methods

- **1st step: thermal images registration**
 - Images alignment using similarity criteria
 - Registration using control points and a template constructed from Karolinska mean faces

- **2nd step: two different approaches to answer the questions**
 - Principal Component Analyses (data-driven)
 - Anatomical approach using the ARTANATOMY tool (ROI)

http://www.artanatomia.net Victoria Contreras Flores SPAIN 20005
FIRST STEP
Thermal images registration

• Exportation from ThermaCAM
 – Images -> .MAT files

• Reduction of facial images for speed and disk space optimization
 – the 4 FACS experts head should fit into the rectangle during all sequences
 – Chosen size : 210x150

• Facial images extraction and creation of one images array per sequence
 – 238 images for FAST AU sequences
 – 306 images for SLOW AU sequences
 – 1 image each 17ms
Thermal images registration
Facial images normalization

Processing:
0. All images rescaled to 210x150
1. All images of a given sequence aligned on its 1st image
2. All images from all sequences of a given subject aligned on 1st image 1st sequence
3. All images registered on the Karolinska's mean face (man+woman average)

Methods:
Rescaling:
- bilinear interpolation

Alignment:
- MATLAB's optimization routine 'fminsearch'
- MATLAB's spatial transformation routine from control point pairs (with 'lwm' as transformation type)

Registration for inter-subjects normalization:
- MATLAB's spatial transformation routine from control point pairs (with 'lwm' as transformation type)

RESULTS
PROCESSING
SECOND STEP
Data-driven approach
Principal Component Analysis
ROI approach
Anatomically-based
The 2 approaches

DATA-DRIVEN APPROACH: PCA
- Representative heat patterns production
 - Principal Components mean grouping by AU using one of these criteria:
 - Components whose eigenvalue>1: our retained criteria
 - Visual selection of interesting components: time-consuming and subjective analysis
 - 90% explained variance: automatic and objective but not as good results as with the eigenvalue criteria
 - Kinetics + phases determination
 - Plot PC grouping same AUs by speed (F/S)
 - 20% extreme curve
 - Intensities
 - Plot factor scores and correlations grouping same AUs by intensity (JP/N/H) + permutations
 - Specificities and Pattern recognition: Are these maps good indicators of the AUs?
 - Correlations between each image of each sequence and each heat pattern maps
 - Non-parametric permutation analysis 10000times

ROI APPROACH: ANATOMICALLY-BASED
- Facial ROI definitions
 - Anatomical template creation: ARTANATOMY + previous registration technique
 - Masks creation: MATLAB’s routine ‘roipoly’ on the registered template
 - ROIs-temperature mean under each condition
 - Kinetics + phases determination
 - Plot ROI temperature variations grouping same AUs by speed (F/S)
 - 20% extreme curve
 - Intensities
 - Plot ROI temperature variations grouping same AUs by intensity (JP/N/H) + permutations
 - Specificities and Pattern recognition: Are these ROIs-temperature good indicators of the AUs?
 - Non-parametric permutation analysis 10000times

Baseline mean corrected on registered images

Heat patterns and anatomical ROI

Facial heat patterns

Anatomical ROI
Is thermography sensitive to kinetics?

In literature: onset duration is 0.935 sec (i.e., 55 frames)

ONSET PHASE = phase where the muscles are contracting and the appearance of the face changes as the facial action grows stronger.

APEX PHASE = phase where the facial action is at its peak and there are no more changes in facial appearance due to this particular facial action.

OFFSET PHASE = phase where the muscles are relaxing and the face returns to its neutral appearance.

-> do not differentiate slow from fast AU
Is thermography sensitive to intensities?

Principal Component Analysis

Is thermography sensitive to muscles specificities?

Pattern recognition of FAST AU on APEX phase

Mean correlations and significative differences with mean PC maps

Permutation 1000x

Font
- Red: significative difference with AU map
- Black: no significative difference

Fill
- Brown: muscles from upper part of the face
- Orange: muscles from lower part of the face

Table of Mean Correlations and Significative Differences

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP AU12</td>
<td>0.2166</td>
<td>0.2166</td>
<td>0.2166</td>
<td>0.30632</td>
<td>n.s.</td>
<td>0.30632</td>
<td>p<0.001</td>
<td>0.30632</td>
<td>p<0.001</td>
</tr>
<tr>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
</tr>
<tr>
<td>MAP AU12+12</td>
<td>0.36024</td>
<td>0.36024</td>
<td>0.36024</td>
<td>0.39664</td>
<td>-0.10171</td>
<td>0.39664</td>
<td>p<0.001</td>
<td>0.39664</td>
<td>p<0.001</td>
</tr>
<tr>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
</tr>
<tr>
<td>MAP AU12+25</td>
<td>0.30501</td>
<td>0.30501</td>
<td>0.30501</td>
<td>0.33503</td>
<td>p<0.001</td>
<td>0.33503</td>
<td>p<0.001</td>
<td>0.33503</td>
<td>p<0.001</td>
</tr>
<tr>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
</tr>
<tr>
<td>MAP AU14</td>
<td>0.24721</td>
<td>0.24721</td>
<td>0.24721</td>
<td>0.32414</td>
<td>p<0.001</td>
<td>0.32414</td>
<td>p<0.001</td>
<td>0.32414</td>
<td>p<0.001</td>
</tr>
<tr>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
</tr>
<tr>
<td>MAP AU14+25</td>
<td>-0.051043</td>
<td>-0.051043</td>
<td>-0.051043</td>
<td>0.029275</td>
<td>n.s.</td>
<td>0.029275</td>
<td>n.s.</td>
<td>0.029275</td>
<td>n.s.</td>
</tr>
<tr>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
</tr>
<tr>
<td>MAP AU25</td>
<td>-0.032034</td>
<td>-0.032034</td>
<td>-0.032034</td>
<td>0.28042</td>
<td>p<0.001</td>
<td>0.28042</td>
<td>p<0.001</td>
<td>0.28042</td>
<td>p<0.001</td>
</tr>
<tr>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
</tr>
<tr>
<td>MAP AU25+10</td>
<td>-0.032034</td>
<td>-0.032034</td>
<td>-0.032034</td>
<td>0.28042</td>
<td>p<0.001</td>
<td>0.28042</td>
<td>p<0.001</td>
<td>0.28042</td>
<td>p<0.001</td>
</tr>
<tr>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
</tr>
<tr>
<td>MAP AU25+11</td>
<td>-0.032034</td>
<td>-0.032034</td>
<td>-0.032034</td>
<td>0.28042</td>
<td>p<0.001</td>
<td>0.28042</td>
<td>p<0.001</td>
<td>0.28042</td>
<td>p<0.001</td>
</tr>
<tr>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
</tr>
<tr>
<td>MAP AU25+12</td>
<td>-0.032034</td>
<td>-0.032034</td>
<td>-0.032034</td>
<td>0.28042</td>
<td>p<0.001</td>
<td>0.28042</td>
<td>p<0.001</td>
<td>0.28042</td>
<td>p<0.001</td>
</tr>
<tr>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
<td>p=0.01</td>
<td>n.s.</td>
</tr>
</tbody>
</table>
Is thermography sensible to muscles specificities?

Pattern recognition of FAST AUs on APEX phase

Mean temperatures and significative differences between AUs
Permutation 1000x

<table>
<thead>
<tr>
<th>ROI</th>
<th>Mean temperatures</th>
<th>Significative differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU12</td>
<td>3.7877e-007 n.s</td>
<td>-3.894e-007 p<0.001</td>
</tr>
<tr>
<td>AU+12</td>
<td>4.523e+007 p<0.001</td>
<td>-1.207e-007 n.s</td>
</tr>
<tr>
<td>AU12+25</td>
<td>2.735e+007 p<0.001</td>
<td>-3.894e-007 n.s</td>
</tr>
<tr>
<td>AU25</td>
<td>3.529e-008 n.s</td>
<td>-3.894e-007 p<0.001</td>
</tr>
<tr>
<td>AU14</td>
<td>2.343e-007 p<0.001</td>
<td>-4.153e-008 n.s</td>
</tr>
<tr>
<td>AU9+10</td>
<td>2.491e-008 p<0.001</td>
<td>-3.104e-007 p<0.001</td>
</tr>
<tr>
<td>AU4</td>
<td>-2.023e-008 p<0.001</td>
<td>-1.159e-007 n.s</td>
</tr>
<tr>
<td>AU1+2</td>
<td>1.074e-008 p<0.001</td>
<td>-1.812e-007 n.s</td>
</tr>
<tr>
<td>AU5</td>
<td>-2.51e-008 n.s</td>
<td>-2.631e-007 p<0.001</td>
</tr>
</tbody>
</table>

Is thermography sensible to muscles specificities?

Pattern recognition - SLOW AUs

PCA - Correlations

ROI
Conclusions

PCA

Is thermography sensitive to kinetics?
In general yes.
Possibility to determine a precise APEX phase
Problem with: AU12+25 (factor scores) / AU9+10 (in both methods)

Is thermography sensitive to intensities?
In general yes.
Possibility to determine a precise APEX phase
Problem with: AU12 (factor scores) / AU14 (factor scores) / AU12+25 (correlations) / AU4 and 5 (missing significant PC @ JP intensity)

Is thermography sensitive to muscles specificities?
In general yes.
Creation of specific facial heat pattern associated to each AU
Eigenvalue criteria better than 90% of variance criteria for constructing these maps.
Problem with: AU12 confusion with Map AU14 @ fast / AU12+25 confusion with Map AU14 @ fast / AU12+12 confusion with Map AU12+25 and AU14 @ slow / AU12+25 confusion with Map AU5 @ slow

ROI

Is thermography sensitive to kinetics?
In general yes.
Possibility to determine a precise APEX phase
Problem with: AU25

Is thermography sensitive to intensities?
In general yes.
Problem with: AU25

Is thermography sensitive to muscles specificities?
In general yes.
Zygomaticus and corrugator contractions seem to be associated with an increase of temperature while frontalis activations is linked with a decrease of temperature
Problem with: AU12 confusion with Map AU14 @ fast & slow / AU12+25 confusion with ROI14, 1+2 @ fast and ROI12 and 25 not recognized / AU4 confusion with ROI6 @ fast / AU1+2 confusion with ROI9+10 @ slow

Discussion

Possible reasons for decreasing temperature in frontalis area?

- Inter-individual anatomic differences:
 - Presence and position of arterial veins in the frontal head
 - Size of brows (cold area) passing on the frontalis zone studied while raising brows
 - Hairs can be present in the top of the frontalis area
 - Crumpling of the skin while contracting the frontalis

- AU simulation performances:
 - The results could depend on the quality of the simulation.
 - Subject 4 was the FACS teacher and has bigger activation and clear corrugator heating and frontalis colding but she was also closer from the camera than other and simulated less AUs.
 - Possible overlap between AU9+10 / AU5 / AU1+2, difficult task
Thermography proved to be an adaptive tool for detecting movements in the face.

PCA or Anatomical approach, most appropriate method?
- Anatomical approach seems to be more sensitive to kinetics and intensities.
- PCA is a global method without a-priori while anatomically-based approach implies some presumptions and appropriate ROIs selection and these ROIs are greatly influence by movements of facial skin.
- PCA with eigenvalue criteria give facial heat patterns associated to AUs.

PCA and anatomical approaches seem to be complementary, PCA can be used for a 1st exploratory analysis, while anatomical method can further investigate regions appearing on PCA for differentiating for example AU6+12 from AU12 (smiles).

Next investigations:
- Is global facial temperature an indicator of real emotions?
 - Experiment with spontaneous emotions with odors and images.
- Is it possible to differentiate what is muscles movement warming from what is emotion-induced skin warming?

These last results that can differentiate AU12, from AU4, AU1+2 and 9+10 let us believe that spontaneous emotions will be detectable with this thermal imaging technique.

General conclusion

Thank you for your attention.

Sylvain Delplanque
Patrik Vuilleumier
Klaus Scherer
Karim N’Diaye
Lucas Tamarit
David Sander
Thermal images registration

First data exploration – mean corrected

The 2 methods comparison

SLOW AUs and approach emotions

<table>
<thead>
<tr>
<th>SLOW</th>
<th>ROI AU12</th>
<th>ROI AU9+10</th>
<th>ROI AU4</th>
<th>ROI AU1+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU12 happiness</td>
<td>0.32464</td>
<td>0.23507</td>
<td>0.04703</td>
<td>0.03964</td>
</tr>
<tr>
<td>AU9+10</td>
<td>0.34757</td>
<td>0.23507</td>
<td>0.04703</td>
<td>0.03964</td>
</tr>
<tr>
<td>AU4</td>
<td>0.27708</td>
<td>0.17285</td>
<td>0.01874</td>
<td>0.01874</td>
</tr>
<tr>
<td>AU1+2</td>
<td>0.30747</td>
<td>0.17285</td>
<td>0.01874</td>
<td>0.01874</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FAST</th>
<th>ROI AU12</th>
<th>ROI AU9+10</th>
<th>ROI AU4</th>
<th>ROI AU1+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU12 happiness</td>
<td>0.31086</td>
<td>0.23507</td>
<td>0.04703</td>
<td>0.03964</td>
</tr>
<tr>
<td>AU9+10</td>
<td>0.34757</td>
<td>0.23507</td>
<td>0.04703</td>
<td>0.03964</td>
</tr>
<tr>
<td>AU4</td>
<td>0.27708</td>
<td>0.17285</td>
<td>0.01874</td>
<td>0.01874</td>
</tr>
<tr>
<td>AU1+2</td>
<td>0.30747</td>
<td>0.17285</td>
<td>0.01874</td>
<td>0.01874</td>
</tr>
</tbody>
</table>

Happiness

- AU12: 0.32464, n.s
- AU9+10: 0.23507, p<0.001
- AU4: 0.04703, p<0.001
- AU1+2: 0.03964, p<0.001

Disgust

- AU12: 0.34757, p<0.001
- AU9+10: 0.23507, n.s
- AU4: 0.01874, p<0.001
- AU1+2: -0.02854, p<0.001

Anger

- AU12: 0.27708, p<0.001
- AU9+10: 0.17285, p<0.001
- AU4: 0.01874, n.s
- AU1+2: -0.15936, p<0.001

Surprise

- AU12: 0.30747, n.s
- AU9+10: 0.17285, p<0.001
- AU4: 0.01874, p<0.001
- AU1+2: 0.20774, n.s
More PCA Results

Is thermography sensitive to kinetics?
Using Factor Scores
Principal Component Analysis

Is thermography sensitive to intensities?
Using Factor Scores

- Mixing slow and fast AUs
Principal Component Analysis

Is thermography sensible to kinetics?

Using Images Similarity Metric (*correlation*)

Is thermography sensible to intensities?

Using Images Similarity Metric (*correlation*) during FAST AUs
Principal Component Analysis

FAST AUs correlations with MAP AU in time

- **Is thermography sensible to muscles specificities?**

Pattern recognition of **SLOW** AU on APEX phase

<table>
<thead>
<tr>
<th></th>
<th>MAP AU12</th>
<th>MAP AU12+12</th>
<th>MAP AU12+25</th>
<th>MAP AU14</th>
<th>MAP AU25</th>
<th>MAP AU25+15</th>
<th>MAP AU24</th>
<th>MAP AU12+15</th>
<th>MAP AUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU12</td>
<td>0.32664</td>
<td>0.30301</td>
<td>0.29201</td>
<td>0.37211</td>
<td>0.34314</td>
<td>0.35771</td>
<td>0.34594</td>
<td>0.34594</td>
<td>0.34594</td>
</tr>
<tr>
<td>AU12+12</td>
<td>0.30121</td>
<td>0.41106</td>
<td>0.28500</td>
<td>0.28500</td>
<td>0.28500</td>
<td>0.28500</td>
<td>0.28500</td>
<td>0.28500</td>
<td>0.28500</td>
</tr>
<tr>
<td>AU12+25</td>
<td>0.21988</td>
<td>0.21300</td>
<td>0.38063</td>
<td>0.29095</td>
<td>0.28693</td>
<td>0.28693</td>
<td>0.28693</td>
<td>0.28693</td>
<td>0.28693</td>
</tr>
<tr>
<td>AU14</td>
<td>0.20695</td>
<td>0.18927</td>
<td>0.17598</td>
<td>0.31082</td>
<td>0.15744</td>
<td>0.12907</td>
<td>0.12907</td>
<td>0.12907</td>
<td>0.12907</td>
</tr>
<tr>
<td>AU125</td>
<td>-0.066163</td>
<td>0.032884</td>
<td>-0.017506</td>
<td>-0.066163</td>
<td>0.21607</td>
<td>0.21607</td>
<td>0.21607</td>
<td>0.21607</td>
<td>0.21607</td>
</tr>
<tr>
<td>AU9+10</td>
<td>0.34672</td>
<td>0.34672</td>
<td>0.34672</td>
<td>0.34672</td>
<td>0.34672</td>
<td>0.34672</td>
<td>0.34672</td>
<td>0.34672</td>
<td>0.34672</td>
</tr>
<tr>
<td>AU4</td>
<td>-0.03001</td>
<td>0.03001</td>
<td>0.03001</td>
<td>0.03001</td>
<td>0.03001</td>
<td>0.03001</td>
<td>0.03001</td>
<td>0.03001</td>
<td>0.03001</td>
</tr>
<tr>
<td>AU1+2</td>
<td>-0.01001</td>
<td>0.01001</td>
<td>0.01001</td>
<td>0.01001</td>
<td>0.01001</td>
<td>0.01001</td>
<td>0.01001</td>
<td>0.01001</td>
<td>0.01001</td>
</tr>
<tr>
<td>AU5</td>
<td>-0.12438</td>
<td>0.011303</td>
<td>0.011303</td>
<td>0.011303</td>
<td>0.011303</td>
<td>0.011303</td>
<td>0.011303</td>
<td>0.011303</td>
<td>0.011303</td>
</tr>
</tbody>
</table>

Mean correlations and significative differences with mean PC maps

Permutation 1000x

FONT
- **Red** significative difference with AU map
- **Black** no significative difference

FILL
- **Brown** muscles from upper part of the face
- **Orange** muscles from lower part of the face
Principal Component Analysis

SLOW AUs correlations with MAP AU in time

MORE ANATOMICAL RESULTS
Anatomically-based approach

Is thermography sensible to kinetics?

(ZYGOMATICUS MAJOR
Temperature Means under AU12

0.5 1 1.5 2

Temperature variation in degrees

CORRUGATOR SUPERIOR
Temperature Means under AU4

0.5 1 1.5 2

Temperature variation in degrees

FRONTALIS
Temperature Means under AU1+2

0.5 1 1.5 2

Temperature variation in degrees

ORNICULARIS OCULI
Temperature Means under AU9+12

0.5 1 1.5 2

Temperature variation in degrees

BUCCINATOR
Temperature Means under AU6

0.5 1 1.5 2

Temperature variation in degrees

LEVATOR PALPEBRAE SUPERIORIS
Temperature Means under AU5

0.5 1 1.5 2

Temperature variation in degrees

DEPRESSOR LABII INFERIORIS
Temperature Means under AU9

0.5 1 1.5 2

Temperature variation in degrees

LEVATOR LABII SUPERIORIS
Temperature Means under AU9+10

0.5 1 1.5 2

Temperature variation in degrees

Anatomically-based approach

Is thermography sensible to intensities?

0

1

2

3
Principal Component Analysis

FAST AUs temperature means in time

Anatomically-based approach

Is thermography sensible to muscles specificities?

Pattern recognition on APEX phase SLOW AUs

<table>
<thead>
<tr>
<th>ROI AU12</th>
<th>ROI AU6</th>
<th>ROI AU25</th>
<th>ROI AU14</th>
<th>ROI AU9+10</th>
<th>ROI AU4</th>
<th>ROI AU1+2</th>
<th>ROI AU5</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU12</td>
<td>4.2412e-007</td>
<td>p<0.001</td>
<td>3.207e-007</td>
<td>p<0.001</td>
<td>3.207e-007</td>
<td>p<0.001</td>
<td>3.207e-007</td>
</tr>
<tr>
<td>AU6+12</td>
<td>1.1579e-008</td>
<td>p<0.001</td>
<td>3.7919e-008</td>
<td>p<0.001</td>
<td>3.7919e-008</td>
<td>p<0.001</td>
<td>3.7919e-008</td>
</tr>
<tr>
<td>AU12+25</td>
<td>4.599e-007</td>
<td>p<0.001</td>
<td>3.862x-007</td>
<td>p<0.001</td>
<td>3.862x-007</td>
<td>p<0.001</td>
<td>3.862x-007</td>
</tr>
<tr>
<td>AU25</td>
<td>-3.0819e-007</td>
<td>p<0.001</td>
<td>3.7054e-007</td>
<td>p<0.001</td>
<td>3.7054e-007</td>
<td>p<0.001</td>
<td>3.7054e-007</td>
</tr>
<tr>
<td>AU14</td>
<td>4.546e-007</td>
<td>p<0.001</td>
<td>3.846e-007</td>
<td>p<0.001</td>
<td>3.846e-007</td>
<td>p<0.001</td>
<td>3.846e-007</td>
</tr>
<tr>
<td>AU9+10</td>
<td>1.219e-008</td>
<td>p<0.001</td>
<td>1.219e-008</td>
<td>p<0.001</td>
<td>1.219e-008</td>
<td>p<0.001</td>
<td>1.219e-008</td>
</tr>
<tr>
<td>AU1+2</td>
<td>1.1579e-008</td>
<td>p<0.001</td>
<td>3.7919e-008</td>
<td>p<0.001</td>
<td>3.7919e-008</td>
<td>p<0.001</td>
<td>3.7919e-008</td>
</tr>
<tr>
<td>AU5</td>
<td>2.016e-007</td>
<td>p<0.001</td>
<td>3.207e-007</td>
<td>p<0.001</td>
<td>3.207e-007</td>
<td>p<0.001</td>
<td>3.207e-007</td>
</tr>
</tbody>
</table>

Mean temperatures and significative differences between AUs

Permutation 1000x

FONT
Red: significative difference with AU map
Blue: no significative difference
Brown: muscles from upper part of the face
Orange: muscles from lower part of the face
Principal Component Analysis

SLOW AUs temperature means in time