Short-term emotion assessment in a recall paradigm

G. Chanel¹, J. Kierkels¹, M. Soleymani¹, D. Grandjean², T. Pun¹

¹ CVML – CUI – University of Geneva ² Swiss Center for Affective Sciences - University of Geneva

IM2 and Affective Sciences Summer Institute

September 2, 2008

Outline

Introduction

Data acquisition protocol

Features extraction

- EEG
- Peripheral

Classification

- Classifiers
- Fusion and rejection

Results

Conclusion and future work

IM2 and Affective Sciences Summer Institute	September 2, 2008	2
---	-------------------	---

Introduction - Objectives

Emotion assessment from signals of:

- the peripheral nervous system (GSR, blood pressure, respiration);
- the central nervous system (EEG).

Why?

Advantages of EEG:

- part of emotional processes are cognitive;
- fast response and temporal resolution;
- the dynamic of the process can be better studied. Advantages of using both modalities:
- physiological signals cannot be easily faked;
- fusion of modalities should improve results.

Applications: behavior prediction, monitoring of critical states, games ...

Introduction - Brief state of the art

Reference Year	# participants	Modalities	Stimuli & time aspects	# classes & results
Healey 2000	1	periph.	Self-induction 3 to 5 min	2 classes 84%
Lisetti 2004	29	periph.	Clips 1 to 4 min.	6 classes 84%
Wagner 2005	1	periph.	Songs 2 min.	2 classes ≈90%
Leon 2007	9	periph.		3 classes 71%
Choppin 2000	20	EEG	Pictures, sounds 6-10 sec.	3 classes ≈60%
Takahashi 2004	12	EEG + periph.	Clips ?	5 classes 42%

IM2 and Affective Sciences Summer Institute

September 2, 2008

Data acquisition protocol

Excited

Neutral

Negative

Positive

Model of emotions: valence-arousal space

Stimuli: imagination or recall of 3 different emotional events. exciting positive: joy, hope, pride etc.; exciting negative: disgust, anger, pain, hate, fear, etc.; calm neutral: calm and neutral event.

Protocol:

Dark screen	to the desired emotion	tim
2-3s	8s	

Trials are directly labelled into the 3 classes above.

10 participant took part in the study.

IM2 and Affective Sciences Summer Institute	September 2, 2008	5

Features extraction - EEG signals

 IM2 and Affective Sciences Summer Institute
 September 2, 2008

Classification

Databases of 300 examples (100 ex. per class):

• 22 Peripheral features with associated labels;

$$\mathbf{x}_{Periph} = [x_{Plet}^1 \cdots x_{Plet}^4 \ x_{GSR}^1 \cdots x_{GSR}^4 \ x_{Resp}^1 \cdots x_{Resp}^{14}]$$

- 16704 EEG STFT features with associated labels.
- 2016 EEG MI features with associated labels.

Classifiers:

- Linear and Quadratic Discriminant analysis (LDA / QDA);
- Support Vector Machine (SVM) with linear kernel;
- Linear Relvance Vector Machine (RVM).

Few examples per class ⇒ *Leave one out* cross-validation strategy:

- ✓ maximize the number of samples for learning;
- only mean of classifier accuracy is computable.

Classification

Data or feature level:

- Electrode combination using MI as a criteria for hierarchical clustering
 ⇒ slight loss in accuracy;
- Concatenation of the feature sets: x_{conc} = [x_{EEG_FFT} x_{EEG_MI} x_{perpiph}]
 ⇒ results are near to those of the bigger feature set.

Decision level / Opinion fusion with summation rule:

Each classifier c_i provide a confidence measure $p_{i,j}$ on each possible decision ω_j for the features vector **x**, these measures are than combined to determine a score s_j :

$$s_j = \sum_{i=1}^n w_i p_{i,j}$$
 with $w_i = \frac{1}{n}$

 $p_{i,j}$ needs to be standardized, generally $p_{i,j} = P(\omega_j | \mathbf{x}, c_i)$. The class ω_j with the maximum score s_j is then chosen.

IM2 and Affective Sciences Summer Institute

Classification

Use of the posterior probalities of classes for fusion:

- LDA, QDA and RVM posterior probabilities are directly available;
- SVM produce only uncalibrated output *f*;

 $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$

 posterior probability estimate based on distribution of *f* values [Platt 1999, Wu 2004].

Rejection of samples with low confidence value:

- reject samples where the fusion score s_i is inferior to a threshold δ_i ;
- the new accuracy is then computed only on the non-rejected samples.

Results – Peripheral

- Average results are higher than the random level, but for NP classification task 2 participants are at the random level.
- Arousal classes are detected with higher accuracy than valence.
- LDA is choosen for fusion.

	IM2 and Affective Sciences Summer Institute	
--	---	--

Results – EEG

	Prob. Linear SVM	
	Best	Worst
Pos / Calm /Neg	89%	41%
Neg / Pos	94%	54%
Calm/ Excited	93%	66%

- Better accuracy with EEG than peripheral features.
- Valence classes and arousal classes are detected with similar accuracies.
- Probabilistic SVM is choosen for fusion because of its similar performance to SVM.

IM2 and Affective Sciences Summer Institute

Results - Fusion of the 3 modalities

 Fusion of modalities always improves accuracy of the best single modality.

-MC

- Interest of fusion of different EEG features as well as fusion of central and peripheral phyisological signals
- Still high variability across participants.

FRSITÉ DE GENÈVE

Results - Rejection

- Choosen limit for δ : 0.47 because most of the badly classified samples are rejected at this point.
- At this point the accuracy is of nearly 80% but 40% of the samples are rejected.

IM2 and Affective Sciences Summer Institute

Conclusion and future work

Conclusions:

- Results shows the usefulness of EEG signals, compared to peripheral signals, in emotion assessment and short time, highly cognitive conditions;
- fusion of the modalities improves mean results for all classes formulations;
- 10% accuracy improvement by rejecting 40% of samples.

Future works:

The question of time in physiological features:

- Performance analysis in different time resolution;
- Synchronization analysis of the different modalities.

Fusion and rejection:

- Different weights for the fusion;
- Strategy to find the best threshold for rejection.